Nanotechnology and Nanoscience

What is Nano technology?

Nanotechnology is science, engineering, and technology conducted at the nanoscale, which is about 1 to 100 nanometers. Nanoscience and nanotechnology are the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering.
Nanotechnology and nanoscience

How it started?

The concepts that seeded nanotechnology were first discussed in 1959 by renowned physicist Richard Feynman in his talk There's Plenty of Room at the Bottom, in which he described the possibility of synthesis via direct manipulation of atoms. In 1960, Egyptian engineer Mohamed Atalla and Korean engineer Dawon Kahng at Bell Labs fabricated the first MOSFET (metal-oxide-semiconductor field-effect transistor) with a gate oxide thickness of 100 nm, along with a gate length of 20 µm.In 1962, Atalla and Kahng fabricated a nanolayer-base metal–semiconductor junction (M–S junction) transistor that used gold (Au) thin films with a thickness of 10 nm. The term "nano-technology" was first used by Norio Taniguchi in 1974, though it was not widely known. Inspired by Feynman's concepts, K. Eric Drexler used the term "nanotechnology" in his 1986 book Engines of Creation: The Coming Era of Nanotechnology, which proposed the idea of a nanoscale "assembler" which would be able to build a copy of itself and of other items of arbitrary complexity with atomic control.
In the 1980s, two major breakthroughs sparked the growth of nanotechnology in modern era. First, the invention of the scanning tunneling microscope in 1981 which provided unprecedented visualization of individual atoms and bonds, and was successfully used to manipulate individual atoms in 1989. The microscope's developers Gerd Binnig and Heinrich Rohrer at IBM Zurich Research Laboratory received a Nobel Prize in Physics in 1986.Binnig, Quate and Gerber also invented the analogous atomic force microscope that year.
Nanotechnology and nanoscience

In 1987, Bijan Davari led an IBM research team that demonstrated the first MOSFET with a 10 nm gate oxide thickness, using tungsten-gate technology. Multi-gate MOSFETs enabled scaling below 20 nm gate length, starting with the FinFET (fin field-effect transistor), a three-dimensional, non-planar, double-gate MOSFET.The FinFET originates from the research of Digh Hisamoto at Hitachi Central Research Laboratory in 1989. At UC Berkeley, FinFET devices were fabricated by a group consisting of Hisamoto along with TSMC's Chenming Hu and other international researchers including Tsu-Jae King Liu, Jeffrey Bokor, Hideki Takeuchi, K. Asano, Jakub Kedziersk, Xuejue Huang, Leland Chang, Nick Lindert, Shibly Ahmed and Cyrus Tabery. The team fabricated FinFET devices down to a 17 nm process in 1998, and then 15 nm in 2001. In 2002, a team including Yu, Chang, Ahmed, Hu, Liu, Bokor and Tabery fabricated a 10 nm FinFET device.


Fundamental concepts of Nanoscience and Nanotechnology

It’s hard to imagine just how small nanotechnology is. One nanometer is a billionth of a meter, or 10-9 of a meter. Here are a few illustrative examples:
  • There are 25,400,000 nanometers in an inch
  • A sheet of newspaper is about 100,000 nanometers thick
  • On a comparative scale, if a marble were a nanometer, then one meter would be the size of the Earth

Nanoscience and nanotechnology involve the ability to see and to control individual atoms and molecules. Everything on Earth is made up of atoms—the food we eat, the clothes we wear, the buildings and houses we live in, and our own bodies.

But something as small as an atom is impossible to see with the naked eye. In fact, it’s impossible to see with the microscopes typically used in a high school science classes. The microscopes needed to see things at the nanoscale were invented relatively recently—about 30 years ago.

Once scientists had the right tools, such as the scanning tunneling microscope (STM) and the atomic force microscope (AFM), the age of nanotechnology was born.

Although modern nanoscience and nanotechnology are quite new, nanoscale materials were used for centuries. Alternate-sized gold and silver particles created colors in the stained glass windows of medieval churches hundreds of years ago. The artists back then just didn’t know that the process they used to create these beautiful works of art actually led to changes in the composition of the materials they were working with.

Today's scientists and engineers are finding a wide variety of ways to deliberately make materials at the nanoscale to take advantage of their enhanced properties such as higher strength, lighter weight, increased control of light spectrum, and greater chemical reactivity than their larger-scale counterparts.



No comments:

Post a Comment

INSTAGRAM FEED

@soratemplates